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Let Q denote the Banach space (sup norm) of quasi continuous functions defined
on the interval [0, 1]. Let M denote the closed convex cone in Q comprised of non-
decreasing functions. For f in Q and 1<p<oo, let f, denote the best L,-
approximation to f by elements of M. It is shown that f, converges uniformly as
p—1to a best L,-approximation to f by elements of M. An example is given to
show that this result is not true for all bounded measurable functions on [0, 1].
© 1985 Academic Press, Inc.

If fis a bounded Lebesque measurable function defined on [0, 1] and 4
is a subset of L_[0, 1] such that, for each p, 1 <p < w0, there exists a uni-
que best L ,-approximation f, to f by elements of A, then fis said to have
the Polya property if f,=lim, ,f, is well defined as a bounded
measurable function: if p, — oo, then lim,, f,, exists a.e. on [0, 1]. This limit
is known to exist in a number of situations, and in each case the limit
function is a best L -approximation which is better in some way than all
other best L _-approximations. Some of the investigations into the
existence and the nature of this limit may be seen in [1-8]. A related
question concerns the limit as p— 1. f is said to have the Polya-one
property if f, =lim, |, f, is well defined as a bounded measurable function.
In [6] it was shown that the Polya-one property obtains in the case where
fis bounded and approximately continuous and A is the set of nondecreas-
ing functions. In the present paper we establish the same result in the case
where f is any quasi continuous function. We begin by showing that the
Polya-one property holds if f is a real valued function with finite domain.

Let X= {x,,.., x,} be a finite subset of R with x, <x,< -+ <x,. Let
V= V(x) be the linear space of bounded real functions on X and M, =
M(X) < V the convex cone of nondecreasing functions in V, i.e., functions A
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satisfying A(x) < h(y) whenever x, ye X and x < y. For each p, 1 <p < o0,
define a weighted /,-norm |-||2 by

n

if1z=( 3 w,-If,-Ip>l/p

i=1

where f€ V is identified with its set of values { f(x,): i=1,.., n}, denoted by
{f;}, and w={w;:i=1,.,n}>0 is a given weight function satisfying
f-iwi=1L
Let f={f,} in V be fixed. For each p, 1 <p <o, denote by P, the
following optimization problem: find g,={g,:i=1,.,n} in M,, if one
exists, such that

1 /=g, 5=inf{|| f—hll%: he M,}.

To describe the known solutions to these problems, we first define L < X to
be a lower set if x,e L and x;€ X, x; < x;, implies that x;e L. Similarly, we
call U< X an upper set if x;e U and x;€ X, x;> x, implies that x;e U. To
simplify the notation we will write i € ¥ = X to indicate that x,€ Y. Let p in
(1, o) be fixed. Let L and U be lower and upper sets, respectively, such
that LN U is not empty. Define u, (L n U) to be the unique real number
minimizing Y {w;|f,—u|”:je LnU}. Let g,={g,i=1,.,n} be the
function defined on X by

= i . 1
Ep.i {5’3-?5} {er,uenl_) u (L U) (1
The solution of the problem P, for 1 <p < oo is known to be given by (1)
(see [11]). Ubhaya [10] studied the convergence of g, as p — c0. Our first
objective in this paper is to show that convergence also results if p is
allowed to decrease to one.

LEMMA 1. Suppose [a,b] <R and F= { f;: Ae A} is a family of strictly
convex functions on R such that, for all 1 in A, the minimizer, x,;, of f, is
contained in (a, b). Define Y. (F, ||'||) = R by ¥(f;)=x,. Then { is con-
tinuous.

Proof. Let f, in F and « <max{x; —a, b—x,} be given. Let 28 =min
{fl(x1_“)_f1(x1), filx;+a)—fi(x;)}. Then |x—x,|>a implies that
Ji(x)=f1(x,) +2B. Suppose that max{|fi(x)—/fix)|:xe(a,b)}<B. If
[x, — x| = a, then

Sox1) > f3(x2) > fi(x2) = B> fi(x,) + B,

a contradiction. Thus |x, —x,| <a.
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DerINITION. Let a= — | fll., b=[fll. and define functions
17,:[a,6]" >R and x,: [a,b] > R for 1 <p< oo by
Tp(u)= Z wilf;'_uilpa
i=1
Kp(u)= z Wilﬁ_ulpa

i=1

where u= (u,,.., u,)€ [a, b]" and ue [a, b].

LEmMA 2. For each p, 1 <p < o, K, is strictly convex and has a unique
minimizer u,, with u, in [a, b].

Proof. Whenever 1 <p<oo and 1<i<n, |f;—u|? is a strictly convex
function of u. Since w>0, K, is also strictly convex, which entails the
existence and uniqueness of u,. It is clear that a<u,<b.

LEMMA 3. In the present context,

lim (¢,())"” = (u)

and

lim (1, (1) =, (u),

the convergence being uniform on the compact sets [a, b]" and [a, b] respec-
tively.
Proof. Whenever ue[a, b]"”, 1<i<nand p<2,

| fi—ul P<27{1fl7 + lud P} <274 f 12, <m( f ),

where m( f)=2% max{| f|%,1}. Let £>0 be given. For any u in [a, b]"
and O<a<l,

It +a(“)l/(1 e 7,(u)|

n 1/(1 +a) n /(1 +a)
SHZ Wi|fi—“i|1+u} —{Z Wi|fi"ui‘}
i i=1

i=1

(2)

n

n 1/(1 + )
+’ Z wil.fi_uil} - Z w;l fi—ul
i=1 i=1
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Since the map x> x"' ** is continuous for x>0, there exists 6 >0 such
that the first summand of (2) is less than ¢/2 whenever

1714 o(w) — 7 (W) <O (3)
To see that there is an « small enough to satisfy (3), consider the function
F(x,a)=x"**—x. Then 0F/dx=(1+a)x*—1, 0F/dx=0 only when
x=xo=(1+a) " and F(xy)=(1+a) TV~ (1 +a) ' Let

B(a) =2 max{|F(xy, a)|, [[m(f)]'**—m(f)]}.
Then sup{|F(x, «)|: 0<x<m(f)} < B(a), so foruin [a,b]" and 1 <i<n,
| fi—ul' "= fi—u| < B(a).

Thus

n

T a() =@ < 3 wil [fi—mul = fiul |

i=1

< B(a) i w,; = B(a).
i=1

Since lim, | o F(x,, ) =0, it is clear that there exists a,>0 such that, for
0 <a<ay, B(a)<é. This establishes (3).

To treat the second summand of (2), let x=X7_, w;| f;—u,}. Then
0<x<I w2l fllw— 21l f |l . Define G by

G(x, B)y=x"1+P _x,

Then 0G/éx=(1+p)"'x#1+H_1 8G/ox=0 only when x=x,=
(L+8)" Y and  G(xo, f)=(14+p) 2= (14+)"*+¥P_  Since
G(xg, )= — F(x,, ), the device of the previous paragraph shows that
there exists B, >0 such that, for 0 < f < 8,,

|x A+ _ x| < g/2.
Let yo=min{a,, B,}. Then, for 0 <y <y,, and for any u in [q, b]",
1Ty 4 W) — 1 (u)] <& 4)

The second limit follows from the first if we let u= (%, u,..., ). This con-
cludes the proof of Lemma 3.

A consequence of the proof of Lemma 3 may be noted at this time: For
1<p< oo, let

d,(p)=inf{|| f—ul|%: ueM,} = inf{| f—u|’: ue M, [a, b]"}.
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Then
lifrll d,(p)=d,(1). (5)

Indeed, from (4), we see that, for all & >0, there exists y,> 0 such that, for
O < y < yO,

[N f=ull, 2"~ f—ull,| <e
Then

inf{|| f—u|l—ecueM, N [a b]"}
<iof{|| f—u||l*" ue M, [a, b]"}
<iof{|| f—u||lL +e:ueM,n[a, b]"};

so |d,(1+y)—d,(1)<e. That a similar statement holds for d(p)=
inf{|| f~u|?: ue R} can be seen by letting u=(y, u,..., ) in (5).

THEOREM 4. For 1 <p< oo, let u, be the unique minimizer of x,. Then
lim, |, u, exists. If u; =lim, | u,, then u, is a minimizer of x,.

Proof. By Lemma2, {k,1<p<oo} is a family of strictly convex
functions on R with each u, in [a,b]. Thus, by Lemmal, a>0 and
1 < g < oo implies that there exists B(x,, «) >0 such that, for I <r< oo and
max { [k (u) —x,(u)|: ue [a, b]} < B(x,,a) we have |u, —u,| <a. By reason-
ing similar to that establishing (3), x, = x, uniformly on [a, 5] as p— ¢ so
there exists é > 0 such that, for |¢g—r| <4,

max {|k (u) —x,(w): ue[a,b]} < B(k,, a).

Thus, the map prsu, is right continuous on (1, c0). Similarly, pr u,, is left
continuous. Suppose lim,,, u, does not exist. Let v'=lim, , u, and
v"=lm, , u,. Choose u, so that v'<u,<v” and, for 1 <i<n, fi—u,#0.
Since p u, is continuous, there exists an infinite sequence {p,} such that
pel 1 and, for all k> 1, u,, =u,. Consider the function

F(p)=rx,(ug)=p ). wil fi—uol”~ " sgn(fi~ uo).
i=1
Forall k> 1, F(p,)=0so 1 is a limit point of the set of zeros of F. Since
F(z) is entire, it is identically zero, whence u, = u, for all p > 1, a contradic-
tion. Thus lim, , u, exists.
Since 3’ w;=1, we can apply inequality (2.10.4) in [9]: for any p> 1,

dD) < f—upl, <l f—u,l2.
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Since d(p)—d(1), by (5), and u,—u;, by the previous paragraph,
| f—uillL =d(1), whence u, is a minimizer of x,.

THEOREM 5. The solution g,={g,;:i=1,.,n} of the problem P, con-
verges as p| 1 to a solution

g1={g1,,‘:i=1,---, n} (6)
of the problem P,.

Proof. The solution, g,, of the problem P,, 1 <p < o0, is given by (1).
Considering L U instead of X in Theorem 4, we conclude that lim, ,
u,(L n U) exists. Let u,;(L n U) denote this limit. Since the number of lower
and upper sets is finite, from (1) it follows that the limit of g,,; exists as p | 1
for all i. It remains to be shown that g, is a solution of the problem P,.
Since g, is nondecreasing for each p > 1, g, also has this property.

As in the proof of Theorem 4, we have

d, ()< /=gl <1 f—g,li

Since d,(p) — d,(1) by (5), and g, — g, by the previous paragraph,
If =gl =du(1),

whence g, is a solution to the problem P,. This concludes the proof of
Theorem 5, and accomplishes our first objective.

A function f: [0, 1] — R is said to be quasi continuous if it has discon-
tinuities of the first kind only. Let Q denote the set of all quasi continuous
functions. Our goal in the remainder of this paper is to generalize
Theorem 5 to the case where fe Q.

Let P denote the set of partitions n= {r:i=0, L,.., n} of [0,1] (ie,
O0=1ty<t, < - <t,=1), let I denote the indicator function of a subset E
of [0,1] (ie, Ig(x)=1if x is in E and I (x)=0 otherwise), and let S
denote the dense linear subspace of Q comprised of simple step functions of
the form

f= Z ail[li]+ Z biI(Ii—l,ti)'
i=0

i=1

For a subset 4 of Q, let 4* denote the set of left continuous elements of
A. Then fis in §* if there exists # in P such that

f=a11[to,tl] + Z ail(’i—l,ti]'

i>1
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For a bounded function f and = in P, f, in S* is defined by

fa(x)y=sup{ fiy):yelto, t:1}, xe [ty 4]
=sup{ fly):ye(t;_1, t;1}, xe(t;_1, 1], i>1,

[ is defined by replacing sup with inf.

A bounded function f'is in 0* if and only if, for any £> 0, there exists =
in P such that 0<f, —f, <e. This allows the use of Theorem 5.

Because L, is a uniformly convex Banach space, 1 <p < oo, for each fin
Q* there exists a unique nearest point f, in M*. We recall the following
result of [8].

THEOREM 6. Let fin S* be given by

n
fzfxl[o,u] + Z fil(h’—l,h]‘
i=2

Let w={w;i=1,..,n} be defined by w,=1t,—t,_, for all i. For 1 <p < oo,
let g, be as defined by (1). Then f, is given by

fp =&pilron1+ Z &pidi,_1-
=2

i=

The next theorem is a slightly altered form of Theorem 3 in [8].

THEOREM 7. Let f in S} and f, be as given in Theorem 6. Then f, con-
verges as p | 1 to the monotone increasing function f, in ST given by

fi=8uilrom+ Z ST (BN R (7)
=2

1

where g,,=lim, , g,, is given by (6). Moreover, f, is a best L
approximation to f by nondecreasing functions.

Proof. Foreachi 1<i<n, let x;=(¢t;+1¢,_,)/2 and let X = {x,.., x,,}.
Consider { f;=/f(x,):i=1,.., n} as a finite real valued function on X. Let w
be defined as above. Then Theorem 5 implies that g, converges to g;.
Therefore lim,, |, f, exists and is given by (7).

For the second part of the theorem, we note that the conclusion of
Theorem 5 holds for any weight function w= {w i=1,.., n} which satisfies
the conditions w>0 and ¥ w,=1. For each {, 1 <i<n, let w,=1/n; then
Theorem 5 implies that

nfi—g <Y nfi—hl,  h={hii=1.,n}eM,,

1 i=1

I M;

i

640/44/3-3
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whence

Z | fi—gul < }: | fi—hl,heM,. (8)
i=1 i=1

Thus, f; is a best L -approximation to f by elements of S*. Let /4 be a non-
decreasing function defined on [0, 1]. We show that there is a nondecreas-
ing function g in S* such that

If=gli<if—hl.

Indeed, for each i, 1 <i<mn, let g; be the real number in the interval
[A(z;_ 1), h(t;)] nearest to f;. Then, for each i

i

[ 1r—si<]" 15=heo.

ti—1 ti1

Now define g on [0, 1] by

g=guIpo 1t Z 84y, 101
i=2

i=

Then g is in S* and it follows from the last inequality together with (8) that

If=filli <N f=—glhisIf— Al

This concludes the proof of Theorem 7.

The remainder of the proof in [8] is now easily adapted to yield our
principal result.

THEOREM 8. Let fe Q. Then there exist nondecreasing functions f,,
1 <p< oo, such that each f, is (up to equivalence) a best L ,-approximation
to f by nondecreasing functions and f, converges uniformly to f, as p
decreases to one.

ExaMpLE 9. If g is bounded measurable function on an interval [a, b],
we say that g has the uniform Polya-one property if g, converges uniformly
as p — 1 to a best L,-approximation to g by elements of M. An example of
a bounded measurable function on a compact interval which does not have
the uniform Polya-one property is constructed as follows: for n> 1, let

n—1
a,= Z (21~i+4_i)’
i=1
n—1
L=27"4 Y (21447,

i=1

4=10,1210 U) [an b1,
n=2
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and g=1,|[0,3]. Since m[g=0]>% g,=0.1f >0 and n> 1 are given,
let

F(x)=2—n(1 __x)1+t+ (2—n+4~n) x1+l'

Then F'(x) =0 implies that x = x,(¢, n) = {(1 +27 ")+ 1} ', which is the
value of g,,, on the interval [a,, a,,]. Since x,(2, n) increases to } as
n— oo, there exists N such that, for n>=N, x,(t,n)>4 Thus
lgi+.—&:illw>1s0 g, ., does not converge in L, to g, as t| 0. Let

B=[0,31-(27'—47%2"+47?)

. U {(an_4v3n’ an+4—3n)u(bn__4—3n, bn+4—3n)}'

n=2

Then g| B may be extended to a function which is continuous on [0, {) and
does not have the uniform Polya-one property.
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