Best L_{1}-Approximation of Quasi Continuous Functions on [0,1] by Nondecreasing Functions

Robert Huotari
Department of Mathematical Sciences, Indiana University-Purdue University, Fort Wayne, Indiana 46805 U.S.A.

Communicated by G. Meinardus
Received November 10, 1983

Abstract

Let Q denote the Banach space (sup norm) of quasi continuous functions defined on the interval $[0,1]$. Let M denote the closed convex cone in Q comprised of nondecreasing functions. For f in Q and $1<p<\infty$, let f_{p} denote the best L_{p}. approximation to f by elements of M. It is shown that f_{p} converges uniformly as $p \rightarrow 1$ to a best L_{1}-approximation to f by elements of M. An example is given to show that this result is not true for all bounded measurable functions on $[0,1]$. © 1985 Academic Press, Inc.

If f is a bounded Lebesque measurable function defined on $[0,1]$ and A is a subset of $L_{\infty}[0,1]$ such that, for each $p, 1<p<\infty$, there exists a unique best L_{p}-approximation f_{p} to f by elements of A, then f is said to have the Polya property if $f_{\infty}=\lim _{p \rightarrow \infty} f_{p}$ is well defined as a bounded measurable function: if $p_{n} \rightarrow \infty$, then $\lim _{n} f_{p_{n}}$ exists a.e. on [0,1$]$. This limit is known to exist in a number of situations, and in each case the limit function is a best L_{∞}-approximation which is better in some way than all other best L_{∞}-approximations. Some of the investigations into the existence and the nature of this limit may be seen in [1-8]. A related question concerns the limit as $p \rightarrow 1 . f$ is said to have the Polya-one property if $f_{1}=\lim _{p \downarrow 1} f_{p}$ is well defined as a bounded measurable function. In [6] it was shown that the Polya-one property obtains in the case where f is bounded and approximately continuous and A is the set of nondecreasing functions. In the present paper we establish the same result in the case where f is any quasi continuous function. We begin by showing that the Polya-one property holds if f is a real valued function with finite domain.

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a finite subset of \mathbb{R} with $x_{1}<x_{2}<\cdots<x_{n}$. Let $V=V(x)$ be the linear space of bounded real functions on X and $M_{n}=$ $M(X) \subset V$ the convex cone of nondecreasing functions in V, i.e., functions h
satisfying $h(x) \leqslant h(y)$ whenever $x, y \in X$ and $x \leqslant y$. For each $p, 1 \leqslant p<\infty$, define a weighted l_{p}-norm $\|\cdot\|_{w}^{p}$ by

$$
\|f\|_{w}^{p}=\left(\sum_{i=1}^{n} w_{i}\left|f_{i}\right| p\right)^{1 / p}
$$

where $f \in V$ is identified with its set of values $\left\{f\left(x_{i}\right): i=1, \ldots, n\right\}$, denoted by $\left\{f_{i}\right\}$, and $w=\left\{w_{i}: i=1, \ldots, n\right\}>0$ is a given weight function satisfying $\sum_{i=1}^{n} w_{i}=1$.

Let $f=\left\{f_{1}\right\}$ in V be fixed. For each $p, 1 \leqslant p<\infty$, denote by P_{p} the following optimization problem: find $g_{p}=\left\{g_{p, i}: i=1, \ldots, n\right\}$ in M_{n}, if one exists, such that

$$
\left\|f-g_{p}\right\|_{w}^{p}=\inf \left\{\|f-h\|_{w}^{p}: h \in M_{n}\right\} .
$$

To describe the known solutions to these problems, we first define $L \subset X$ to be a lower set if $x_{i} \in L$ and $x_{j} \in X, x_{j} \leqslant x_{i}$, implies that $x_{j} \in L$. Similarly, we call $U \subset X$ an upper set if $x_{i} \in U$ and $x_{j} \in X, x_{j} \geqslant x_{i}$ implies that $x_{j} \in U$. To simplify the notation we will write $i \in Y \subset X$ to indicate that $x_{i} \in Y$. Let p in $(1, \infty)$ be fixed. Let L and U be lower and upper sets, respectively, such that $L \cap U$ is not empty. Define $u_{p}(L \cap U)$ to be the unique real number minimizing $\sum\left\{w_{j}\left|f_{j}-u\right|^{p}: j \in L \cap U\right\}$. Let $g_{p}=\left\{g_{p, i}: i=1, \ldots, n\right\}$ be the function defined on X by

$$
\begin{equation*}
g_{p, i}=\max _{\{U: i \in U\}} \min _{\{L: i \in L\}} u_{p}(L \cap U) . \tag{1}
\end{equation*}
$$

The solution of the problem P_{p} for $1<p<\infty$ is known to be given by (1) (see [11]). Ubhaya [10] studied the convergence of g_{p} as $p \rightarrow \infty$. Our first objective in this paper is to show that convergence also results if p is allowed to decrease to one.

Lemma 1. Suppose $[a, b] \subset \mathbb{R}$ and $F=\left\{f_{\lambda}: \lambda \in \Lambda\right\}$ is a family of strictly convex functions on \mathbb{R} such that, for all λ in Λ, the minimizer, x_{λ}, of f_{λ} is contained in (a, b). Define $\psi:\left(F,\|\cdot\|_{\infty}\right) \rightarrow \mathbb{R}$ by $\psi\left(f_{\lambda}\right)=x_{\lambda}$. Then ψ is continuous.

Proof. Let f_{1} in F and $\alpha<\max \left\{x_{1}-a, b-x_{1}\right\}$ be given. Let $2 \beta=\min$ $\left\{f_{1}\left(x_{1}-\alpha\right)-f_{1}\left(x_{1}\right), f_{1}\left(x_{1}+\alpha\right)-f_{1}\left(x_{1}\right)\right\}$. Then $\left|x-x_{1}\right| \geqslant \alpha$ implies that $f_{1}(x) \geqslant f_{1}\left(x_{1}\right)+2 \beta$. Suppose that $\max \left\{\left|f_{1}(x)-f_{2}(x)\right|: x \in(a, b)\right\}<\beta$. If $\left|x_{2}-x_{1}\right| \geqslant \alpha$, then

$$
f_{2}\left(x_{1}\right)>f_{2}\left(x_{2}\right)>f_{1}\left(x_{2}\right)-\beta>f_{1}\left(x_{1}\right)+\beta,
$$

a contradiction. Thus $\left|x_{2}-x_{1}\right|<\alpha$.

Definition. Let $a=-\|f\|_{\infty}, \quad b=\|f\|_{\infty}$ and define functions $\tau_{p}:[a, b]^{n} \rightarrow \mathbb{R}$ and $\kappa_{p}:[a, b] \rightarrow \mathbb{R}$ for $1 \leqslant p<\infty$ by

$$
\begin{aligned}
& \tau_{p}(\mathbf{u})=\sum_{i=1}^{n} w_{i}\left|f_{i}-u_{i}\right|^{p} \\
& \kappa_{p}(u)=\sum_{i=1}^{n} w_{i}\left|f_{i}-u\right|^{p}
\end{aligned}
$$

where $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right) \in[a, b]^{n}$ and $u \in[a, b]$.

Lemma 2. For each $p, 1<p<\infty, \kappa_{p}$ is strictly convex and has a unique minimizer u_{p}, with u_{p} in $[a, b]$.

Proof. Whenever $1<p<\infty$ and $1 \leqslant i \leqslant n,\left|f_{i}-u\right|^{p}$ is a strictly convex function of u. Since $w>0, \kappa_{p}$ is also strictly convex, which entails the existence and uniqueness of u_{p}. It is clear that $a \leqslant u_{p} \leqslant b$.

Lemma 3. In the present context,

$$
\lim _{p \downarrow 1}\left(\tau_{p}(\mathbf{u})\right)^{1 / p}=\tau_{1}(\mathbf{u})
$$

and

$$
\lim _{p \downarrow 1}\left(\kappa_{p}(u)\right)^{1 / p}=\kappa_{1}(u),
$$

the convergence being uniform on the compact sets $[a, b]^{n}$ and $[a, b]$ respectively.

Proof. Whenever $u \in[a, b]^{n}, 1 \leqslant i \leqslant n$ and $p<2$,

$$
\left|f_{i}-u_{i}\right|^{p} \leqslant 2^{p}\left\{\left|f_{i}\right|^{p}+\left|u_{i}\right|^{p}\right\} \leqslant 2^{p+1}\|f\|_{\infty}^{p} \leqslant m(f),
$$

where $m(f)=2^{3} \max \left\{\|f\|_{\infty}^{2}, 1\right\}$. Let $\varepsilon>0$ be given. For any \mathbf{u} in $[a, b]^{n}$ and $0<\alpha<1$,

$$
\begin{align*}
& \left|\tau_{1+\alpha}(\mathbf{u})^{1 /(1+\alpha)}-\tau_{1}(\mathbf{u})\right| \\
& \leqslant \tag{2}
\end{align*} \quad\left|\left\{\sum_{i=1}^{n} w_{i}\left|f_{i}-u_{i}\right|^{1+\alpha}\right\}^{1 /(1+\alpha)}-\left\{\sum_{i=1}^{n} w_{i}\left|f_{i}-u_{i}\right|\right\}^{1 /(1+\alpha)}\right|
$$

Since the map $x \mapsto x^{1 /(1+\alpha)}$ is continuous for $x \geqslant 0$, there exists $\delta>0$ such that the first summand of (2) is less than $\varepsilon / 2$ whenever

$$
\begin{equation*}
\left|\tau_{1+\alpha}(\mathbf{u})-\tau_{1}(\mathbf{u})\right|<\delta \tag{3}
\end{equation*}
$$

To see that there is an α small enough to satisfy (3), consider the function $F(x, \alpha)=x^{1+\alpha}-x$. Then $\partial F / \partial x=(1+\alpha) x^{\alpha}-1, \partial F / \partial x=0$ only when $x=x_{0}=(1+\alpha)^{-1 / \alpha}$ and $F\left(x_{0}\right)=(1+\alpha)^{-(1+1 / \alpha)}-(1+\alpha)^{-1 / \alpha}$. Let

$$
B(\alpha)=2 \max \left\{\left|F\left(x_{0}, \alpha\right)\right|,\left|[m(f)]^{1+\alpha}-m(f)\right|\right\} .
$$

Then $\sup \{|F(x, \alpha)|: 0<x<m(f)\}<B(\alpha)$, so for \mathbf{u} in $[a, b]^{n}$ and $1 \leqslant i \leqslant n$,

$$
\left|f_{1}-u_{i}\right|^{1+\alpha}-\left|f_{i}-u_{i}\right|<B(\alpha)
$$

Thus

$$
\begin{aligned}
\left|\tau_{1+\alpha}(\mathbf{u})-\tau_{1}(\mathbf{u})\right| & \leqslant \sum_{i=1}^{n} w_{i}| | f_{i}-\left.u_{i}\right|^{1+\alpha}-\left|f_{i}-u_{i}\right| \mid \\
& \leqslant B(\alpha) \sum_{i=1}^{n} w_{i}=B(\alpha)
\end{aligned}
$$

Since $\lim _{\alpha \downarrow 0} F\left(x_{0}, \alpha\right)=0$, it is clear that there exists $\alpha_{0}>0$ such that, for $0<\alpha<\alpha_{0}, B(\alpha)<\delta$. This establishes (3).

To treat the second summand of (2), let $x=\sum_{i=1}^{n} w_{i}\left|f_{i}-u_{i}\right|$. Then $0<x<\sum w_{i} 2\|f\|_{\infty}-2\|f\|_{\infty}$. Define G by

$$
G(x, \beta)=x^{1 /(1+\beta)}-x .
$$

Then $\partial G / \partial x=(1+\beta)^{-1} x^{-\beta /(1+\beta)}-1, \quad \partial G / \partial x=0$ only when $x=x_{0}=$ $(1+\beta)^{-(1+1 / \beta)}$ and $G\left(x_{0}, \beta\right)=(1+\beta)^{-1 / \beta}-(1+\beta)^{-(1+1 / \beta)}$. Since $G\left(x_{0}, \alpha\right)=-F\left(x_{0}, \alpha\right)$, the device of the previous paragraph shows that there exists $\beta_{0}>0$ such that, for $0<\beta<\beta_{0}$,

$$
\left|x^{1 /(1+\beta)}-x\right|<\varepsilon / 2
$$

Let $\gamma_{0}=\min \left\{\alpha_{0}, \beta_{0}\right\}$. Then, for $0<\gamma<\gamma_{0}$, and for any \mathbf{u} in $[a, b]^{n}$,

$$
\begin{equation*}
\left|\tau_{1+\gamma}(\mathbf{u})^{1 /(1+\gamma)}-\tau_{1}(\mathbf{u})\right|<\varepsilon . \tag{4}
\end{equation*}
$$

The second limit follows from the first if we let $\mathbf{u}=(u, u, \ldots, u)$. This concludes the proof of Lemma 3.

A consequence of the proof of Lemma 3 may be noted at this time: For $1 \leqslant p<\infty$, let

$$
d_{n}(p)=\inf \left\{\|f-\mathbf{u}\|_{w}^{p}: \mathbf{u} \varepsilon M_{n}\right\}=\inf \left\{\|f-\mathbf{u}\|_{w}^{p}: u \in M_{n} \cap[a, b]^{n}\right\}
$$

Then

$$
\begin{equation*}
\lim _{p \downarrow 1} d_{n}(p)=d_{n}(1) . \tag{5}
\end{equation*}
$$

Indeed, from (4), we see that, for all $\varepsilon>0$, there exists $\gamma_{0}>0$ such that, for $0<\gamma<\gamma_{0}$,

$$
\left|\|f-\mathbf{u}\|_{w}^{1+\gamma}-\|f-\mathbf{u}\|_{w}^{1}\right|<\varepsilon .
$$

Then

$$
\begin{aligned}
& \inf \left\{\|f-\mathbf{u}\|_{w}^{1}-\varepsilon: \mathbf{u} \in M_{n} \cap[a, b]^{n}\right\} \\
& \quad<\inf \left\{\|f-\mathbf{u}\|_{w}^{1+\gamma}: \mathbf{u} \in M_{n} \cap[a, b]^{n}\right\} \\
& \quad<\inf \left\{\|f-\mathbf{u}\|_{w}^{1}+\varepsilon: \mathbf{u} \in M_{n} \cap[a, b]^{n}\right\} ;
\end{aligned}
$$

so $\left|d_{n}(1+\gamma)-d_{n}(1)\right|<\varepsilon$. That a similar statement holds for $d(p)=$ $\inf \left\{\|f-u\|_{w}^{P}: u \in R\right\}$ can be seen by letting $\mathbf{u}=(u, u, \ldots, u)$ in (5).

Theorem 4. For $1<p<\infty$, let u_{p} be the unique minimizer of κ_{p}. Then $\lim _{p \downarrow 1} u_{p}$ exists. If $u_{1}=\lim _{p \downarrow 1} u_{p}$, then u_{1} is a minimizer of κ_{1}.

Proof. By Lemma 2, $\left\{\kappa_{p}: 1<p<\infty\right\}$ is a family of strictly convex functions on R with each u_{p} in $[a, b]$. Thus, by Lemma $1, \alpha>0$ and $1<q<\infty$ implies that there exists $\beta\left(\kappa_{q}, \alpha\right)>0$ such that, for $1<r<\infty$ and $\max \left\{\left|\kappa_{q}(u)-\kappa_{r}(u)\right|: u \in[a, b]\right\}<\beta\left(\kappa_{q}, \alpha\right)$ we have $\left|u_{q}-u_{r}\right|<\alpha$. By reasoning similar to that establishing (3), $\kappa_{p} \rightarrow \kappa_{q}$ uniformly on $[a, b]$ as $p \rightarrow q$ so there exists $\delta>0$ such that, for $|q-r|<\delta$,

$$
\max \left\{\left|\kappa_{q}(u)-\kappa_{r}(u)\right|: u \in[a, b]\right\}<B\left(\kappa_{q}, \alpha\right) .
$$

Thus, the map $p \mapsto u_{p}$ is right continuous on ($1, \infty$). Similarly, $p \mapsto u_{p}$ is left continuous. Suppose $\lim _{p \downarrow 1} u_{p}$ does not exist. Let $v^{\prime}=\lim _{p \downarrow 1} u_{p}$ and $v^{\prime \prime}=\overline{\lim }_{p \downarrow 1} u_{p}$. Choose u_{0} so that $v^{\prime}<u_{0}<v^{\prime \prime}$ and, for $1 \leqslant i \leqslant n, f_{i}-u_{0} \neq 0$. Since $p \mapsto u_{p}$ is continuous, there exists an infinite sequence $\left\{p_{k}\right\}$ such that $p_{k} \downarrow 1$ and, for all $k \geqslant 1, u_{p k}=u_{0}$. Consider the function

$$
F(p)=\kappa_{p}^{\prime}\left(u_{0}\right)=p \sum_{i=1}^{n} w_{i}\left|f_{i}-u_{0}\right|^{p-1} \operatorname{sgn}\left(f_{i}-u_{0}\right) .
$$

For all $k \geqslant 1, F\left(p_{k}\right)=0$ so 1 is a limit point of the set of zeros of F. Since $F(z)$ is entire, it is identically zero, whence $u_{p}=u_{0}$ for all $p>1$, a contradiction. Thus $\lim _{p \downarrow 1} u_{p}$ exists.

Since $\sum w_{i}=1$, we can apply inequality (2.10.4) in [9]: for any $p>1$,

$$
d(1) \leqslant\left\|f-u_{p}\right\|_{w}^{1} \leqslant\left\|f-u_{p}\right\|_{w}^{p} .
$$

Since $d(p) \rightarrow d(1)$, by (5), and $u_{p} \rightarrow u_{1}$, by the previous paragraph, $\left\|f-u_{1}\right\|_{w}^{1}=d(1)$, whence u_{1} is a minimizer of κ_{1}.

Theorem 5. The solution $g_{p}=\left\{g_{p, i} i=1, \ldots, n\right\}$ of the problem P_{p} converges as $p \downarrow 1$ to a solution

$$
\begin{equation*}
g_{1}=\left\{g_{1, i} i=1, \ldots, n\right\} \tag{6}
\end{equation*}
$$

of the problem P_{1}.
Proof. The solution, g_{p}, of the problem $P_{p}, 1<p<\infty$, is given by (1). Considering $L \cap U$ instead of X in Theorem 4, we conclude that $\lim _{p \downarrow 1}$ $u_{p}(L \cap U)$ exists. Let $u_{1}(L \cap U)$ denote this limit. Since the number of lower and upper sets is finite, from (1) it follows that the limit of $g_{p, i}$ exists as $p \downarrow 1$ for all i. It remains to be shown that g_{1} is a solution of the problem P_{1}. Since g_{p} is nondecreasing for each $p>1, g_{1}$ also has this property.
As in the proof of Theorem 4, we have

$$
d_{n}(1) \leqslant\left\|f-g_{p}\right\|_{w}^{1} \leqslant\left\|f-g_{p}\right\|_{w}^{p} .
$$

Since $d_{n}(p) \rightarrow d_{n}(1)$ by (5), and $g_{p} \rightarrow g_{1}$ by the previous paragraph,

$$
\left\|f-g_{1}\right\|_{w}^{1}=d_{n}(1)
$$

whence g_{1} is a solution to the problem P_{1}. This concludes the proof of Theorem 5, and accomplishes our first objective.
A function $f:[0,1] \rightarrow \mathbb{R}$ is said to be quasi continuous if it has discontinuities of the first kind only. Let Q denote the set of all quasi continuous functions. Our goal in the remainder of this paper is to generalize Theorem 5 to the case where $f \in Q$.

Let P denote the set of partitions $\pi=\left\{t_{i}: i=0,1, \ldots, n\right\}$ of [0, 1] (i.e., $0=t_{0}<t_{1}<\cdots<t_{n}=1$), let I_{E} denote the indicator function of a subset E of $[0,1]$ (i.e., $I_{E}(x)=1$ if x is in E and $I_{E}(x)=0$ otherwise), and let S denote the dense linear subspace of Q comprised of simple step functions of the form

$$
f=\sum_{i=0}^{n} a_{i} I_{[i,]}+\sum_{i=1}^{n} b_{i} I_{\left(t_{i-1}, t_{i}\right)}
$$

For a subset A of Q, let A^{*} denote the set of left continuous elements of A. Then f is in S^{*} if there exists π in P such that

$$
f=a_{1} I_{\left[t_{0}, t_{1}\right]}+\sum_{i>1} a_{i} I_{\left(t_{i-1, t i}\right]} .
$$

For a bounded function f and π in P, f_{π} in S^{*} is defined by

$$
\begin{aligned}
f_{\pi}(x) & =\sup \left\{f(y): y \in\left[t_{0}, t_{1}\right]\right\}, & & x \in\left[t_{0}, t_{1}\right] \\
& =\sup \left\{f(y): y \in\left(t_{i-1}, t_{i}\right]\right\}, & & x \in\left(t_{i-1}, t_{i}\right], i>1,
\end{aligned}
$$

f_{π} is defined by replacing sup with inf.
A bounded function f is in Q^{*} if and only if, for any $\varepsilon>0$, there exists π in P such that $0 \leqslant \bar{f}_{\pi}-f_{\pi}<\varepsilon$. This allows the use of Theorem 5.

Because L_{p} is a uniformly convex Banach space, $1<p<\infty$, for each f in Q^{*} there exists a unique nearest point f_{p} in M^{*}. We recall the following result of [8].

Theorem 6. Let f in S_{π}^{*} be given by

$$
f=f_{1} I_{[0, t]]}+\sum_{i=2}^{n} f_{i} I_{\left(t_{i-1}, t, 1\right]}
$$

Let $w=\left\{w_{i}: i=1, \ldots, n\right\}$ be defined by $w_{i}=t_{i}-t_{i-1}$ for all i. For $1<p<\infty$, let g_{p} be as defined by (1). Then f_{p} is given by

$$
f_{p}=g_{p, 1} I_{[0, t]}+\sum_{i=2}^{n} g_{p, i} I_{\left[t_{i}-1, t i\right]} .
$$

The next theorem is a slightly altered form of Theorem 3 in [8].
Theorem 7. Let f in S_{π}^{*} and f_{p} be as given in Theorem 6. Then f_{p} converges as $p \downarrow 1$ to the monotone increasing function f_{1} in S_{π}^{*} given by

$$
\begin{equation*}
f_{1}=g_{1,1} I_{\left[0, t_{1}\right]}+\sum_{i=2}^{n} g_{1, i} I_{(i-1, t i]}, \tag{7}
\end{equation*}
$$

where $g_{1, i}=\lim _{p \downarrow 1} g_{p, i}$ is given by (6). Moreover, f_{1} is a° best L_{1} approximation to f by nondecreasing functions.
Proof. For each $i, 1 \leqslant i \leqslant n$, let $x_{i}=\left(t_{i}+t_{i-1}\right) / 2$ and let $X=\left\{x_{1}, \ldots, x_{n}\right\}$. Consider $\left\{f_{i}=f\left(x_{i}\right): i=1, \ldots, n\right\}$ as a finite real valued function on X. Let w be defined as above. Then Theorem 5 implies that g_{p} converges to g_{1}. Therefore $\lim _{p \downarrow 1} f_{p}$ exists and is given by (7).
For the second part of the theorem, we note that the conclusion of Theorem 5 holds for any weight function $w=\left\{w_{i}: i=1, \ldots, n\right\}$ which satisfies the conditions $w>0$ and $\sum w_{i}=1$. For each $i, 1 \leqslant i \leqslant n$, let $w_{i}=1 / n$; then Theorem 5 implies that

$$
\sum_{i=1}^{n} n^{-1}\left|f_{i}-g_{1, i}\right| \leqslant \sum_{i=1}^{n} n^{-1}\left|f_{i}-h\right|, \quad h=\left\{h_{i}: i=1, \ldots, n\right\} \in M_{n},
$$

whence

$$
\begin{equation*}
\sum_{i=1}^{n}\left|f_{i}-g_{1, i}\right| \leqslant \sum_{i=1}^{n}\left|f_{i}-h\right|, h \in M_{n} \tag{8}
\end{equation*}
$$

Thus, f_{1} is a best L_{1}-approximation to f by elements of S_{π}^{*}. Let h be a nondecreasing function defined on $[0,1]$. We show that there is a nondecreasing function g in S_{π}^{*} such that

$$
\|f-g\|_{1} \leqslant\|f-h\|_{1}
$$

Indeed, for each $i, 1 \leqslant i \leqslant n$, let g_{i} be the real number in the interval [$\left.h\left(t_{i-1}\right), h\left(t_{i}\right)\right]$ nearest to f_{i}. Then, for each i,

$$
\int_{t_{i-1}}^{t_{i}}\left|f_{i}-g_{i}\right| \leqslant \int_{t_{i-1}}^{t_{i}}\left|f_{i}-h(x)\right| .
$$

Now define g on $[0,1]$ by

$$
g=g_{1} I_{\left[0, \iota_{i}\right]}+\sum_{i=2}^{n} g_{i} I_{\left(t_{i-1}, t_{i}\right]}
$$

Then g is in S_{π}^{*} and it follows from the last inequality together with (8) that

$$
\left\|f-f_{1}\right\|_{1} \leqslant\|f-g\|_{1} \leqslant\|f-h\|_{1}
$$

This concludes the proof of Theorem 7.
The remainder of the proof in [8] is now easily adapted to yield our principal result.

Theorem 8. Let $f \in Q$. Then there exist nondecreasing functions f_{p}, $1 \leqslant p<\infty$, such that each f_{p} is (up to equivalence) a best L_{p}-approximation to f by nondecreasing functions and f_{p} converges uniformly to f_{1} as p decreases to one.

Example 9. If g is bounded measurable function on an interval $[a, b]$, we say that g has the uniform Polya-one property if g_{p} converges uniformly as $p \rightarrow 1$ to a best L_{1}-approximation to g by elements of M. An example of a bounded measurable function on a compact interval which does not have the uniform Polya-one property is constructed as follows: for $n>1$, let

$$
\begin{aligned}
& a_{n}=\sum_{i=1}^{n-1}\left(2^{1-i}+4^{-i}\right), \\
& b_{n}=2^{-n}+\sum_{i=1}^{n-1}\left(2^{1-i}+4^{-i}\right), \\
& A=[0,1 / 2] \cup \bigcup_{n=2}^{\infty}\left[a_{n}, b_{n}\right],
\end{aligned}
$$

and $g=I_{A} \left\lvert\,\left[0, \frac{7}{3}\right]\right.$. Since $m[g=0]>\frac{7}{6}, g_{1} \equiv 0$. If $t>0$ and $n>1$ are given, let

$$
F(x)=2^{-n}(1-x)^{1+t}+\left(2^{-n}+4^{-n}\right) x^{1+t} .
$$

Then $F^{\prime}(x)=0$ implies that $x=x_{0}(t, n)=\left\{\left(1+2^{-n}\right)^{1 / t}+1\right\}^{-1}$, which is the value of g_{1+t} on the interval $\left[a_{n}, a_{n+1}\right.$]. Since $x_{0}(t, n)$ increases to $\frac{1}{2}$ as $n \rightarrow \infty$, there exists N such that, for $n \geqslant N, x_{0}(t, n)>\frac{1}{4}$. Thus $\left\|g_{1+t}-g_{1}\right\|_{\infty}>\frac{1}{4}$ so g_{1+t} does not converge in L_{∞} to g_{1} as $t \downarrow 0$. Let

$$
\begin{aligned}
B= & {\left[0, \frac{7}{3}\right]-\left(2^{-1}-4^{-3}, 2^{-1}+4^{-3}\right) } \\
& -\bigcup_{n=2}^{\infty}\left\{\left(a_{n}-4^{-3 n}, a_{n}+4^{-3 n}\right) \cup\left(b_{n}-4^{-3 n}, b_{n}+4^{-3 n}\right)\right\} .
\end{aligned}
$$

Then $g \mid B$ may be extended to a function which is continuous on $\left[0, \frac{7}{3}\right.$) and does not have the uniform Polya-one property.

References

1. A. M. Al-Rashed, Best L_{∞}-approximation in probability spaces, J. Math. Anal. Appl. 91 (1983), 1-8.
2. A. M. Al-Rashed and R. B. Darst, Convergence of best best L_{∞}-approximations, Proc. Amer. Math. Soc. 83 (1981), 690-692.
3. A. M. Al-Rashed and R. B. Darst, Best L_{∞}-approximation of measurable vector-valued functions, submitted for publication.
4. R. B. Darst, Convergence of L_{p}-approximations as $p \rightarrow \infty$, Proc. Amer. Math. Soc. 81 (1981), 433-436.
5. R. B. Darst, Approximation in $L_{p}, 1<p<\infty$, in "Measure Theory and Applications, Proceedings, 1980 Conference, Northern Illinois University" (G. A. Golden and R. F. Wheeler, Eds.), De Kalb, Ill., 1981.
6. R. B. Darst and R. Huotari, Best L_{1}-approximation of bounded. approximately continuous functions in $[0,1]$ by nondecreasing functions, J. Approx. Theory 43 (1985), 178-189.
7. R. B. Darst, D. A. Legg, and D. W. Townsend, The Polya algorithm in $L_{\infty^{\prime}}$ approximation, J. Approx. Theory 38 (1983), 209-220.
8. R. B. Darst and S. Sahab, Approximation of continuous and quasicontinuous functions by monotone functions, J. Approx. Theory, 38 (1983), 9-27.
9. G. H. Hardy, J. E. Littlewood, and G. Polya, "Inequalities," Cambridge, 1934.
10. V. A. Ubhaya, Isotone optimization II, J. Approx. Theory, 12 (1974), 146-159.
11. C. Van Eeden, "Testing and Estimating Ordered Parameters of Probability Distributions," Ph.D. dissertation, University of Amsterdam, Studentendrukkerij Poortpers N.V., Amsterdam, 1958.
