Best L_1 -Approximation of Quasi Continuous Functions on [0, 1] by Nondecreasing Functions

ROBERT HUOTARI

Department of Mathematical Sciences, Indiana University–Purdue University, Fort Wayne, Indiana 46805 U.S.A.

Communicated by G. Meinardus

Received November 10, 1983

Let Q denote the Banach space (sup norm) of quasi continuous functions defined on the interval [0, 1]. Let M denote the closed convex cone in Q comprised of nondecreasing functions. For f in Q and $1 , let <math>f_p$ denote the best L_p approximation to f by elements of M. It is shown that f_p converges uniformly as $p \to 1$ to a best L_1 -approximation to f by elements of M. An example is given to show that this result is not true for all bounded measurable functions on [0, 1]. (© 1985 Academic Press, Inc.

If f is a bounded Lebesque measurable function defined on [0, 1] and A is a subset of $L_{\infty}[0, 1]$ such that, for each p, 1 , there exists a unique best L_p -approximation f_p to f by elements of A, then f is said to have the Polya property if $f_{\infty} = \lim_{p \to \infty} f_p$ is well defined as a bounded measurable function: if $p_n \to \infty$, then $\lim_n f_{p_n}$ exists a.e. on [0, 1]. This limit is known to exist in a number of situations, and in each case the limit function is a best L_{∞} -approximation which is better in some way than all other best L_{∞} -approximations. Some of the investigations into the existence and the nature of this limit may be seen in [1-8]. A related question concerns the limit as $p \rightarrow 1$. f is said to have the Polya-one property if $f_1 = \lim_{p \perp 1} f_p$ is well defined as a bounded measurable function. In [6] it was shown that the Polya-one property obtains in the case where f is bounded and approximately continuous and A is the set of nondecreasing functions. In the present paper we establish the same result in the case where f is any quasi continuous function. We begin by showing that the Polya-one property holds if f is a real valued function with finite domain.

Let $X = \{x_1, ..., x_n\}$ be a finite subset of \mathbb{R} with $x_1 < x_2 < \cdots < x_n$. Let V = V(x) be the linear space of bounded real functions on X and $M_n = M(X) \subset V$ the convex cone of nondecreasing functions in V, i.e., functions h

satisfying $h(x) \leq h(y)$ whenever x, $y \in X$ and $x \leq y$. For each p, $1 \leq p < \infty$, define a weighted l_p -norm $\|\cdot\|_w^p$ by

$$|| f ||_{w}^{p} = \left(\sum_{i=1}^{n} w_{i} |f_{i}| p \right)^{1/p}$$

where $f \in V$ is identified with its set of values $\{f(x_i): i = 1,..., n\}$, denoted by $\{f_i\}$, and $w = \{w_i: i = 1,..., n\} > 0$ is a given weight function satisfying $\sum_{i=1}^{n} w_i = 1$.

Let $f = \{f_1\}$ in V be fixed. For each p, $1 \le p < \infty$, denote by P_p the following optimization problem: find $g_p = \{g_{p,i}: i = 1,...,n\}$ in M_n , if one exists, such that

$$|| f - g_p ||_w^p = \inf\{|| f - h||_w^p: h \in M_n\}.$$

To describe the known solutions to these problems, we first define $L \subset X$ to be a *lower set* if $x_i \in L$ and $x_j \in X$, $x_j \leq x_i$, implies that $x_j \in L$. Similarly, we call $U \subset X$ an *upper set* if $x_i \in U$ and $x_j \in X$, $x_j \ge x_i$ implies that $x_j \in U$. To simplify the notation we will write $i \in Y \subset X$ to indicate that $x_i \in Y$. Let p in $(1, \infty)$ be fixed. Let L and U be lower and upper sets, respectively, such that $L \cap U$ is not empty. Define u_p $(L \cap U)$ to be the unique real number minimizing $\sum \{w_j | f_j - u |^p : j \in L \cap U\}$. Let $g_p = \{g_{p,i} : i = 1, ..., n\}$ be the function defined on X by

$$g_{p,i} = \max_{\{U:i \in U\}} \min_{\{L:i \in L\}} u_p(L \cap U).$$
(1)

The solution of the problem P_p for $1 is known to be given by (1) (see [11]). Ubhaya [10] studied the convergence of <math>g_p$ as $p \to \infty$. Our first objective in this paper is to show that convergence also results if p is allowed to decrease to one.

LEMMA 1. Suppose $[a, b] \subset \mathbb{R}$ and $F = \{f_{\lambda} : \lambda \in \Lambda\}$ is a family of strictly convex functions on \mathbb{R} such that, for all λ in Λ , the minimizer, x_{λ} , of f_{λ} is contained in (a, b). Define $\psi : (F, \|\cdot\|_{\infty}) \to \mathbb{R}$ by $\psi(f_{\lambda}) = x_{\lambda}$. Then ψ is continuous.

Proof. Let f_1 in F and $\alpha < \max\{x_1 - a, b - x_1\}$ be given. Let $2\beta = \min\{f_1(x_1 - \alpha) - f_1(x_1), f_1(x_1 + \alpha) - f_1(x_1)\}$. Then $|x - x_1| \ge \alpha$ implies that $f_1(x) \ge f_1(x_1) + 2\beta$. Suppose that $\max\{|f_1(x) - f_2(x)|: x \in (a, b)\} < \beta$. If $|x_2 - x_1| \ge \alpha$, then

$$f_2(x_1) > f_2(x_2) > f_1(x_2) - \beta > f_1(x_1) + \beta,$$

a contradiction. Thus $|x_2 - x_1| < \alpha$.

DEFINITION. Let $a = - ||f||_{\infty}$, $b = ||f||_{\infty}$ and define functions $\tau_p: [a, b]^n \to \mathbb{R}$ and $\kappa_p: [a, b] \to \mathbb{R}$ for $1 \le p < \infty$ by

$$\tau_p(\mathbf{u}) = \sum_{i=1}^n w_i |f_i - u_i|^p,$$

$$\kappa_p(u) = \sum_{i=1}^n w_i |f_i - u|^p,$$

where $u = (u_1, ..., u_n) \in [a, b]^n$ and $u \in [a, b]$.

LEMMA 2. For each p, $1 , <math>\kappa_p$ is strictly convex and has a unique minimizer u_p , with u_p in [a, b].

Proof. Whenever $1 and <math>1 \le i \le n$, $|f_i - u|^p$ is a strictly convex function of u. Since w > 0, κ_p is also strictly convex, which entails the existence and uniqueness of u_p . It is clear that $a \le u_p \le b$.

LEMMA 3. In the present context,

$$\lim_{p \downarrow 1} (\tau_p(\mathbf{u}))^{1/p} = \tau_1(\mathbf{u})$$

and

$$\lim_{p \downarrow 1} (\kappa_p(u))^{1/p} = \kappa_1(u),$$

the convergence being uniform on the compact sets [a, b]ⁿ and [a, b] respectively.

Proof. Whenever $u \in [a, b]^n$, $1 \le i \le n$ and p < 2,

$$|f_i - u_i|^p \leq 2^p \{ |f_i|^p + |u_i|^p \} \leq 2^{p+1} ||f||_{\infty}^p \leq m(f),$$

where $m(f) = 2^3 \max\{||f||_{\infty}^2, 1\}$. Let $\varepsilon > 0$ be given. For any **u** in $[a, b]^n$ and $0 < \alpha < 1$,

$$\begin{aligned} |\tau_{1+\alpha}(\mathbf{u})^{1/(1+\alpha)} - \tau_{1}(\mathbf{u})| \\ &\leqslant \left| \left\{ \sum_{i=1}^{n} w_{i} | f_{i} - u_{i} |^{1+\alpha} \right\}^{1/(1+\alpha)} - \left\{ \sum_{i=1}^{n} w_{i} | f_{i} - u_{i} | \right\}^{1/(1+\alpha)} \right| \quad (2) \\ &+ \left| \left\{ \sum_{i=1}^{n} w_{i} | f_{i} - u_{i} | \right\}^{1/(1+\alpha)} - \sum_{i=1}^{n} w_{i} | f_{i} - u_{i} | \right\}. \end{aligned}$$

Since the map $x \mapsto x^{1/(1+\alpha)}$ is continuous for $x \ge 0$, there exists $\delta > 0$ such that the first summand of (2) is less than $\varepsilon/2$ whenever

$$|\tau_{1+\alpha}(\mathbf{u}) - \tau_1(\mathbf{u})| < \delta.$$
(3)

To see that there is an α small enough to satisfy (3), consider the function $F(x, \alpha) = x^{1+\alpha} - x$. Then $\partial F/\partial x = (1+\alpha) x^{\alpha} - 1$, $\partial F/\partial x = 0$ only when $x = x_0 = (1+\alpha)^{-1/\alpha}$ and $F(x_0) = (1+\alpha)^{-(1+1/\alpha)} - (1+\alpha)^{-1/\alpha}$. Let

$$B(\alpha) = 2 \max\{|F(x_0, \alpha)|, |[m(f)]^{1+\alpha} - m(f)|\}$$

Then $\sup\{|F(x, \alpha)|: 0 < x < m(f)\} < B(\alpha)$, so for **u** in $[a, b]^n$ and $1 \le i \le n$,

$$|f_1-u_i|^{1+\alpha}-|f_i-u_i| < B(\alpha).$$

Thus

$$\begin{aligned} |\tau_{1+\alpha}(\mathbf{u})-\tau_{1}(\mathbf{u})| &\leq \sum_{i=1}^{n} w_{i} ||f_{i}-u_{i}|^{1+\alpha}-|f_{i}-u_{i}|| \\ &\leq B(\alpha) \sum_{i=1}^{n} w_{i}=B(\alpha). \end{aligned}$$

Since $\lim_{\alpha \downarrow 0} F(x_0, \alpha) = 0$, it is clear that there exists $\alpha_0 > 0$ such that, for $0 < \alpha < \alpha_0$, $B(\alpha) < \delta$. This establishes (3).

To treat the second summand of (2), let $x = \sum_{i=1}^{n} w_i |f_i - u_i|$. Then $0 < x < \sum w_i 2 ||f||_{\infty} - 2 ||f||_{\infty}$. Define G by

$$G(x,\beta) = x^{1/(1+\beta)} - x.$$

Then $\partial G/\partial x = (1+\beta)^{-1} x^{-\beta/(1+\beta)} - 1$, $\partial G/\partial x = 0$ only when $x = x_0 = (1+\beta)^{-(1+1/\beta)}$ and $G(x_0, \beta) = (1+\beta)^{-1/\beta} - (1+\beta)^{-(1+1/\beta)}$. Since $G(x_0, \alpha) = -F(x_0, \alpha)$, the device of the previous paragraph shows that there exists $\beta_0 > 0$ such that, for $0 < \beta < \beta_0$,

$$|x^{1/(1+\beta)}-x|<\varepsilon/2.$$

Let $\gamma_0 = \min{\{\alpha_0, \beta_0\}}$. Then, for $0 < \gamma < \gamma_0$, and for any **u** in $[a, b]^n$,

$$|\tau_{1+\gamma}(\mathbf{u})^{1/(1+\gamma)} - \tau_1(\mathbf{u})| < \varepsilon.$$
(4)

The second limit follows from the first if we let $\mathbf{u} = (u, u, ..., u)$. This concludes the proof of Lemma 3.

A consequence of the proof of Lemma 3 may be noted at this time: For $1 \le p < \infty$, let

$$d_n(p) = \inf\{\|f - \mathbf{u}\|_w^p : \mathbf{u} \in M_n\} = \inf\{\|f - \mathbf{u}\|_w^p : u \in M_n \cap [a, b]^n\}.$$

Then

$$\lim_{p \to 1} d_n(p) = d_n(1).$$
(5)

Indeed, from (4), we see that, for all $\varepsilon > 0$, there exists $\gamma_0 > 0$ such that, for $0 < \gamma < \gamma_0$,

$$|\|f-\mathbf{u}\|_{w}^{1+\gamma}-\|f-\mathbf{u}\|_{w}^{1}|<\varepsilon.$$

Then

$$\inf\{\|f-\mathbf{u}\|_{w}^{1}-\varepsilon:\mathbf{u}\in M_{n}\cap[a,b]^{n}\}$$
$$<\inf\{\|f-\mathbf{u}\|_{w}^{1+\gamma}:\mathbf{u}\in M_{n}\cap[a,b]^{n}\}$$
$$<\inf\{\|f-\mathbf{u}\|_{w}^{1}+\varepsilon:\mathbf{u}\in M_{n}\cap[a,b]^{n}\};$$

so $|d_n(1+\gamma) - d_n(1)| < \varepsilon$. That a similar statement holds for $d(p) = \inf\{||f-u||_w^p: u \in R\}$ can be seen by letting $\mathbf{u} = (u, u, ..., u)$ in (5).

THEOREM 4. For $1 , let <math>u_p$ be the unique minimizer of κ_p . Then $\lim_{p \perp 1} u_p$ exists. If $u_1 = \lim_{p \perp 1} u_p$, then u_1 is a minimizer of κ_1 .

Proof. By Lemma 2, $\{\kappa_p: 1 is a family of strictly convex functions on <math>R$ with each u_p in [a, b]. Thus, by Lemma 1, $\alpha > 0$ and $1 < q < \infty$ implies that there exists $\beta(\kappa_q, \alpha) > 0$ such that, for $1 < r < \infty$ and $\max\{|\kappa_q(u) - \kappa_r(u)|: u \in [a, b]\} < \beta(\kappa_q, \alpha)$ we have $|u_q - u_r| < \alpha$. By reasoning similar to that establishing (3), $\kappa_p \to \kappa_q$ uniformly on [a, b] as $p \to q$ so there exists $\delta > 0$ such that, for $|q - r| < \delta$,

$$\max\{|\kappa_a(u) - \kappa_r(u)| : u \in [a, b]\} < B(\kappa_a, \alpha).$$

Thus, the map $p \mapsto u_p$ is right continuous on $(1, \infty)$. Similarly, $p \mapsto u_p$ is left continuous. Suppose $\lim_{p \downarrow 1} u_p$ does not exist. Let $v' = \underbrace{\lim_{p \downarrow 1} u_p}_{p \downarrow 1}$ and $v'' = \overline{\lim_{p \downarrow 1} u_p}$. Choose u_0 so that $v' < u_0 < v''$ and, for $1 \le i \le n$, $f_i - u_0 \ne 0$. Since $p \mapsto u_p$ is continuous, there exists an infinite sequence $\{p_k\}$ such that $p_k \downarrow 1$ and, for all $k \ge 1$, $u_{pk} = u_0$. Consider the function

$$F(p) = \kappa'_p(u_0) = p \sum_{i=1}^n w_i |f_i - u_0|^{p-1} \operatorname{sgn}(f_i - u_0).$$

For all $k \ge 1$, $F(p_k) = 0$ so 1 is a limit point of the set of zeros of F. Since F(z) is entire, it is identically zero, whence $u_p = u_0$ for all p > 1, a contradiction. Thus $\lim_{p \perp 1} u_p$ exists.

Since $\sum w_i = 1$, we can apply inequality (2.10.4) in [9]: for any p > 1,

$$d(1) \leq \|f - u_p\|_w^1 \leq \|f - u_p\|_w^p.$$

Since $d(p) \to d(1)$, by (5), and $u_p \to u_1$, by the previous paragraph, $||f - u_1||_w^1 = d(1)$, whence u_1 is a minimizer of κ_1 .

THEOREM 5. The solution $g_p = \{g_{p,i}: i = 1,...,n\}$ of the problem P_p converges as $p \downarrow 1$ to a solution

$$g_1 = \{g_{1,i}: i = 1, ..., n\}$$
(6)

of the problem P_1 .

Proof. The solution, g_p , of the problem P_p , 1 , is given by (1). $Considering <math>L \cap U$ instead of X in Theorem 4, we conclude that $\lim_{p \downarrow 1} u_p(L \cap U)$ exists. Let $u_1(L \cap U)$ denote this limit. Since the number of lower and upper sets is finite, from (1) it follows that the limit of $g_{p,i}$ exists as $p \downarrow 1$ for all *i*. It remains to be shown that g_1 is a solution of the problem P_1 . Since g_p is nondecreasing for each p > 1, g_1 also has this property.

As in the proof of Theorem 4, we have

$$d_n(1) \leq ||f - g_p||_w^1 \leq ||f - g_p||_w^p$$

Since $d_n(p) \rightarrow d_n(1)$ by (5), and $g_p \rightarrow g_1$ by the previous paragraph,

$$\|f - g_1\|_w^1 = d_n(1),$$

whence g_1 is a solution to the problem P_1 . This concludes the proof of Theorem 5, and accomplishes our first objective.

A function $f: [0, 1] \to \mathbb{R}$ is said to be *quasi continuous* if it has discontinuities of the first kind only. Let Q denote the set of all quasi continuous functions. Our goal in the remainder of this paper is to generalize Theorem 5 to the case where $f \in Q$.

Let P denote the set of partitions $\pi = \{t_i: i = 0, 1, ..., n\}$ of [0, 1] (i.e., $0 = t_0 < t_1 < \cdots < t_n = 1$), let I_E denote the indicator function of a subset E of [0, 1] (i.e., $I_E(x) = 1$ if x is in E and $I_E(x) = 0$ otherwise), and let S denote the dense linear subspace of Q comprised of simple step functions of the form

$$f = \sum_{i=0}^{n} a_{i} I_{[t_{i}]} + \sum_{i=1}^{n} b_{i} I_{(t_{i-1},t_{i})}.$$

For a subset A of Q, let A^* denote the set of left continuous elements of A. Then f is in S^* if there exists π in P such that

$$f = a_1 I_{[t_0, t_1]} + \sum_{i>1} a_i I_{(t_{i-1}, t_i]}.$$

For a bounded function f and π in P, f_{π} in S^{*} is defined by

$$\begin{split} \bar{f}_{\pi}(x) &= \sup\{f(y): y \in [t_0, t_1]\}, \qquad x \in [t_0, t_1]\\ &= \sup\{f(y): y \in (t_{i-1}, t_i]\}, \qquad x \in (t_{i-1}, t_i], i > 1, \end{split}$$

 f_{π} is defined by replacing sup with inf.

A bounded function f is in Q^* if and only if, for any $\varepsilon > 0$, there exists π in P such that $0 \le f_{\pi} - f_{\pi} < \varepsilon$. This allows the use of Theorem 5.

Because L_p is a uniformly convex Banach space, 1 , for each <math>f in Q^* there exists a unique nearest point f_p in M^* . We recall the following result of [8].

THEOREM 6. Let f in S^*_{π} be given by

$$f = f_1 I_{[0,t_1]} + \sum_{i=2}^n f_i I_{(t_{i-1},t_i]}.$$

Let $w = \{w_i: i = 1,..., n\}$ be defined by $w_i = t_i - t_{i-1}$ for all *i*. For $1 , let <math>g_p$ be as defined by (1). Then f_p is given by

$$f_p = g_{p,1}I_{[0,t_1]} + \sum_{i=2}^n g_{p,i}I_{(t_{i-1},t_i]}$$

The next theorem is a slightly altered form of Theorem 3 in [8].

THEOREM 7. Let f in S_{π}^* and f_p be as given in Theorem 6. Then f_p converges as $p \downarrow 1$ to the monotone increasing function f_1 in S_{π}^* given by

$$f_1 = g_{1,1}I_{[0,t_1]} + \sum_{i=2}^n g_{1,i}I_{(i-1,t_i]},$$
(7)

where $g_{1,i} = \lim_{p \downarrow 1} g_{p,i}$ is given by (6). Moreover, f_1 is a best L_1 -approximation to f by nondecreasing functions.

Proof. For each $i, 1 \le i \le n$, let $x_i = (t_i + t_{i-1})/2$ and let $X = \{x_1, ..., x_n\}$. Consider $\{f_i = f(x_i): i = 1, ..., n\}$ as a finite real valued function on X. Let w be defined as above. Then Theorem 5 implies that g_p converges to g_1 . Therefore $\lim_{p \ge 1} f_p$ exists and is given by (7).

For the second part of the theorem, we note that the conclusion of Theorem 5 holds for any weight function $w = \{w_i: i = 1, ..., n\}$ which satisfies the conditions w > 0 and $\sum w_i = 1$. For each $i, 1 \le i \le n$, let $w_i = 1/n$; then Theorem 5 implies that

$$\sum_{i=1}^{n} n^{-1} |f_i - g_{1,i}| \leq \sum_{i=1}^{n} n^{-1} |f_i - h|, \qquad h = \{h_i: i = 1, ..., n\} \in M_n,$$

whence

$$\sum_{i=1}^{n} |f_i - g_{1,i}| \leq \sum_{i=1}^{n} |f_i - h|, h \in M_n.$$
(8)

Thus, f_1 is a best L_1 -approximation to f by elements of S_{π}^* . Let h be a nondecreasing function defined on [0, 1]. We show that there is a nondecreasing function g in S_{π}^* such that

$$\|f-g\|_{1} \leq \|f-h\|_{1}$$

Indeed, for each *i*, $1 \le i \le n$, let g_i be the real number in the interval $[h(t_{i-1}), h(t_i)]$ nearest to f_i . Then, for each *i*,

$$\int_{t_{i-1}}^{t_i} |f_i - g_i| \leq \int_{t_{i-1}}^{t_i} |f_i - h(x)|.$$

Now define g on [0, 1] by

$$g = g_1 I_{[0,t_1]} + \sum_{i=2}^n g_i I_{(t_{i-1},t_i]}.$$

Then g is in S_{π}^* and it follows from the last inequality together with (8) that

$$\|f - f_1\|_1 \leq \|f - g\|_1 \leq \|f - h\|_1$$

This concludes the proof of Theorem 7.

The remainder of the proof in [8] is now easily adapted to yield our principal result.

THEOREM 8. Let $f \in Q$. Then there exist nondecreasing functions f_p , $1 \leq p < \infty$, such that each f_p is (up to equivalence) a best L_p -approximation to f by nondecreasing functions and f_p converges uniformly to f_1 as p decreases to one.

EXAMPLE 9. If g is bounded measurable function on an interval [a, b], we say that g has the uniform Polya-one property if g_p converges uniformly as $p \to 1$ to a best L_1 -approximation to g by elements of M. An example of a bounded measurable function on a compact interval which does not have the uniform Polya-one property is constructed as follows: for n > 1, let

$$a_n = \sum_{i=1}^{n-1} (2^{1-i} + 4^{-i}),$$

$$b_n = 2^{-n} + \sum_{i=1}^{n-1} (2^{1-i} + 4^{-i}),$$

$$A = [0, 1/2] \cup \bigcup_{n=2}^{\infty} [a_n, b_n],$$

228

and $g = I_A | [0, \frac{7}{3}]$. Since $m[g=0] > \frac{7}{6}$, $g_1 \equiv 0$. If t > 0 and n > 1 are given, let

$$F(x) = 2^{-n}(1-x)^{1+t} + (2^{-n}+4^{-n})x^{1+t}.$$

Then F'(x) = 0 implies that $x = x_0(t, n) = \{(1 + 2^{-n})^{1/t} + 1\}^{-1}$, which is the value of g_{1+t} on the interval $[a_n, a_{n+1}]$. Since $x_0(t, n)$ increases to $\frac{1}{2}$ as $n \to \infty$, there exists N such that, for $n \ge N$, $x_0(t, n) > \frac{1}{4}$. Thus $\|g_{1+t} - g_1\|_{\infty} > \frac{1}{4}$ so g_{1+t} does not converge in L_{∞} to g_1 as $t \downarrow 0$. Let

$$B = [0, \frac{7}{3}] - (2^{-1} - 4^{-3}, 2^{-1} + 4^{-3})$$
$$- \bigcup_{n=2}^{\infty} \{ (a_n - 4^{-3n}, a_n + 4^{-3n}) \cup (b_n - 4^{-3n}, b_n + 4^{-3n}) \}.$$

Then g | B may be extended to a function which is continuous on $[0, \frac{7}{3}]$ and does not have the uniform Polya-one property.

References

- 1. A. M. AL-RASHED, Best L_{∞} -approximation in probability spaces, J. Math. Anal. Appl. 91 (1983), 1–8.
- A. M. AL-RASHED AND R. B. DARST, Convergence of best best L_∞-approximations, Proc. Amer. Math. Soc. 83 (1981), 690-692.
- 3. A. M. AL-RASHED AND R. B. DARST, Best L_{∞} -approximation of measurable vector-valued functions, submitted for publication.
- 4. R. B. DARST, Convergence of L_p -approximations as $p \to \infty$, Proc. Amer. Math. Soc. 81 (1981), 433-436.
- 5. R. B. DARST, Approximation in L_p , 1 , in "Measure Theory and Applications, Proceedings, 1980 Conference, Northern Illinois University" (G. A. Golden and R. F. Wheeler, Eds.), De Kalb, Ill., 1981.
- R. B. DARST AND R. HUOTARI, Best L₁-approximation of bounded. approximately continuous functions in [0, 1] by nondecreasing functions, J. Approx. Theory 43 (1985), 178-189.
- 7. R. B. DARST, D. A. LEGG, AND D. W. TOWNSEND, The Polya algorithm in L_{∞} -approximation, J. Approx. Theory 38 (1983), 209–220.
- R. B. DARST AND S. SAHAB, Approximation of continuous and quasicontinuous functions by monotone functions, J. Approx. Theory, 38 (1983), 9-27.
- 9. G. H. HARDY, J. E. LITTLEWOOD, AND G. POLYA, "Inequalities," Cambridge, 1934.
- 10. V. A. UBHAYA, Isotone optimization II, J. Approx. Theory, 12 (1974), 146-159.
- C. VAN EEDEN, "Testing and Estimating Ordered Parameters of Probability Distributions," Ph.D. dissertation, University of Amsterdam, Studentendrukkerij Poortpers N.V., Amsterdam, 1958.